
Scheduling of independent tasks

Kizito NKURIKIYEYEZU, Ph.D.

Readings

Read Chapter 2, section 2.1 (pages 23-33) of
Cottet et al. (2002). Scheduling in Real-Time
Systems. Skip other sections!
Topics

rate monotonic
inverse deadline
earliest deadline first
least laxity first
On-line scheduling

1Readings are based on Cottet, F., Delacroix, J., Mammeri, Z., & Kaiser, C. (2002). Scheduling in
Real-Time Systems. Wiley.

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 1 / 17

Review

Recurrent Task Models
When job with the same computation requirements are released recurrently,
they jobs can be modeled by a recurrent task

Periodic Task τi

A job is released exactly and periodically by a period Ti
A phase ϕi indicates when the first job is released
A relative deadline Di for each job from task τi
(ϕi , Ci ,Ti ,Di) is the specification of periodic task τi , where Ci is the worst-case
execution time. When ϕi is omitted, we assume ϕi = 0.

Sporadic Task τi

Ti is the minimal time between any two consecutive job releases
A relative deadline Di for each job from task τi
(Ci ,Ti ,Di) is the specification of sporadic task τi , where Ci is the worst-case
execution time.

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 2 / 17

Recurrent Task Models
When job with the same computation requirements are released recurrently,
they jobs can be modeled by a recurrent task
Periodic Task τi

A job is released exactly and periodically by a period Ti

A phase ϕi indicates when the first job is released
A relative deadline Di for each job from task τi
(ϕi , Ci ,Ti ,Di) is the specification of periodic task τi , where Ci is the worst-case
execution time. When ϕi is omitted, we assume ϕi = 0.

Sporadic Task τi

Ti is the minimal time between any two consecutive job releases
A relative deadline Di for each job from task τi
(Ci ,Ti ,Di) is the specification of sporadic task τi , where Ci is the worst-case
execution time.

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 2 / 17

Recurrent Task Models
When job with the same computation requirements are released recurrently,
they jobs can be modeled by a recurrent task
Periodic Task τi

A job is released exactly and periodically by a period Ti
A phase ϕi indicates when the first job is released

A relative deadline Di for each job from task τi
(ϕi , Ci ,Ti ,Di) is the specification of periodic task τi , where Ci is the worst-case
execution time. When ϕi is omitted, we assume ϕi = 0.

Sporadic Task τi

Ti is the minimal time between any two consecutive job releases
A relative deadline Di for each job from task τi
(Ci ,Ti ,Di) is the specification of sporadic task τi , where Ci is the worst-case
execution time.

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 2 / 17

Recurrent Task Models
When job with the same computation requirements are released recurrently,
they jobs can be modeled by a recurrent task
Periodic Task τi

A job is released exactly and periodically by a period Ti
A phase ϕi indicates when the first job is released
A relative deadline Di for each job from task τi

(ϕi , Ci ,Ti ,Di) is the specification of periodic task τi , where Ci is the worst-case
execution time. When ϕi is omitted, we assume ϕi = 0.

Sporadic Task τi

Ti is the minimal time between any two consecutive job releases
A relative deadline Di for each job from task τi
(Ci ,Ti ,Di) is the specification of sporadic task τi , where Ci is the worst-case
execution time.

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 2 / 17

Recurrent Task Models
When job with the same computation requirements are released recurrently,
they jobs can be modeled by a recurrent task
Periodic Task τi

A job is released exactly and periodically by a period Ti
A phase ϕi indicates when the first job is released
A relative deadline Di for each job from task τi
(ϕi , Ci ,Ti ,Di) is the specification of periodic task τi , where Ci is the worst-case
execution time. When ϕi is omitted, we assume ϕi = 0.

Sporadic Task τi

Ti is the minimal time between any two consecutive job releases
A relative deadline Di for each job from task τi
(Ci ,Ti ,Di) is the specification of sporadic task τi , where Ci is the worst-case
execution time.

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 2 / 17

Recurrent Task Models
When job with the same computation requirements are released recurrently,
they jobs can be modeled by a recurrent task
Periodic Task τi

A job is released exactly and periodically by a period Ti
A phase ϕi indicates when the first job is released
A relative deadline Di for each job from task τi
(ϕi , Ci ,Ti ,Di) is the specification of periodic task τi , where Ci is the worst-case
execution time. When ϕi is omitted, we assume ϕi = 0.

Sporadic Task τi

Ti is the minimal time between any two consecutive job releases
A relative deadline Di for each job from task τi
(Ci ,Ti ,Di) is the specification of sporadic task τi , where Ci is the worst-case
execution time.

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 2 / 17

Recurrent Task Models
When job with the same computation requirements are released recurrently,
they jobs can be modeled by a recurrent task
Periodic Task τi

A job is released exactly and periodically by a period Ti
A phase ϕi indicates when the first job is released
A relative deadline Di for each job from task τi
(ϕi , Ci ,Ti ,Di) is the specification of periodic task τi , where Ci is the worst-case
execution time. When ϕi is omitted, we assume ϕi = 0.

Sporadic Task τi
Ti is the minimal time between any two consecutive job releases

A relative deadline Di for each job from task τi
(Ci ,Ti ,Di) is the specification of sporadic task τi , where Ci is the worst-case
execution time.

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 2 / 17

Recurrent Task Models
When job with the same computation requirements are released recurrently,
they jobs can be modeled by a recurrent task
Periodic Task τi

A job is released exactly and periodically by a period Ti
A phase ϕi indicates when the first job is released
A relative deadline Di for each job from task τi
(ϕi , Ci ,Ti ,Di) is the specification of periodic task τi , where Ci is the worst-case
execution time. When ϕi is omitted, we assume ϕi = 0.

Sporadic Task τi
Ti is the minimal time between any two consecutive job releases
A relative deadline Di for each job from task τi

(Ci ,Ti ,Di) is the specification of sporadic task τi , where Ci is the worst-case
execution time.

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 2 / 17

Recurrent Task Models
When job with the same computation requirements are released recurrently,
they jobs can be modeled by a recurrent task
Periodic Task τi

A job is released exactly and periodically by a period Ti
A phase ϕi indicates when the first job is released
A relative deadline Di for each job from task τi
(ϕi , Ci ,Ti ,Di) is the specification of periodic task τi , where Ci is the worst-case
execution time. When ϕi is omitted, we assume ϕi = 0.

Sporadic Task τi
Ti is the minimal time between any two consecutive job releases
A relative deadline Di for each job from task τi
(Ci ,Ti ,Di) is the specification of sporadic task τi , where Ci is the worst-case
execution time.

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 2 / 17

Real-time task model

ri , task release time, i.e. the
execution request time.

Ci , task worst-case computation
time.
Di , task relative deadline, i.e. the
maximum acceptable delay for its
processing.
Ti , task period (valid only for
periodic tasks).
Absolute deadline
di = ri + Di—transgression of the
absolute deadline causes a timing
fault.

FIG 1. Task model

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 3 / 17

Real-time task model

ri , task release time, i.e. the
execution request time.
Ci , task worst-case computation
time.

Di , task relative deadline, i.e. the
maximum acceptable delay for its
processing.
Ti , task period (valid only for
periodic tasks).
Absolute deadline
di = ri + Di—transgression of the
absolute deadline causes a timing
fault.

FIG 1. Task model

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 3 / 17

Real-time task model

ri , task release time, i.e. the
execution request time.
Ci , task worst-case computation
time.
Di , task relative deadline, i.e. the
maximum acceptable delay for its
processing.

Ti , task period (valid only for
periodic tasks).
Absolute deadline
di = ri + Di—transgression of the
absolute deadline causes a timing
fault.

FIG 1. Task model

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 3 / 17

Real-time task model

ri , task release time, i.e. the
execution request time.
Ci , task worst-case computation
time.
Di , task relative deadline, i.e. the
maximum acceptable delay for its
processing.
Ti , task period (valid only for
periodic tasks).

Absolute deadline
di = ri + Di—transgression of the
absolute deadline causes a timing
fault.

FIG 1. Task model

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 3 / 17

Real-time task model

ri , task release time, i.e. the
execution request time.
Ci , task worst-case computation
time.
Di , task relative deadline, i.e. the
maximum acceptable delay for its
processing.
Ti , task period (valid only for
periodic tasks).
Absolute deadline
di = ri + Di—transgression of the
absolute deadline causes a timing
fault.

FIG 1. Task model

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 3 / 17

Relative Deadline vs Period
When we have a task set, we say that the task set is with

implicity deadline when the relative deadline Di is equal to the period Ti , i.e.,
Di = Ti for every task τi constrained deadline when the relative deadline Di is
no more than the period Ti , i.e., Di ≤ Ti , for every task τi

arbitrary deadline when the relative deadline Di could be larger than the period
Ti for some task τi

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 4 / 17

Relative Deadline vs Period
When we have a task set, we say that the task set is with

implicity deadline when the relative deadline Di is equal to the period Ti , i.e.,
Di = Ti for every task τi constrained deadline when the relative deadline Di is
no more than the period Ti , i.e., Di ≤ Ti , for every task τi

arbitrary deadline when the relative deadline Di could be larger than the period
Ti for some task τi

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 4 / 17

Sporadic and Periodic Tasks
For periodic taks

Syncronous system—each task τi has a phase of 0, i.e., ϕi = 0

Asynchronous system—the phase are arbitrary

Hyperperiod: Least common multiple (LCM) of Ti

Task utilization of task
ui =

Ci

Ti
(1)

Total system utilization

U =
n

∑
i=1

ui (2)

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 5 / 17

Sporadic and Periodic Tasks
For periodic taks

Syncronous system—each task τi has a phase of 0, i.e., ϕi = 0
Asynchronous system—the phase are arbitrary

Hyperperiod: Least common multiple (LCM) of Ti

Task utilization of task
ui =

Ci

Ti
(1)

Total system utilization

U =
n

∑
i=1

ui (2)

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 5 / 17

Scheduling of independent tasks

On-line algorithms for periodic tasks
simple rule—that assigns priorities according to temporal parameters of tasks.

static—the priority is fixed. the priorities are assigned to tasks before execution
and do not change over time. For example:

rate monotonic (Liu and Layland, 1973)1

inverse deadline or deadline monotonic (Leung and Merrill, 1980)2

dynamic—scheduling algorithm is based on variable parameters, i.e. absolute
task deadlines

earliest deadline first (Liu and Layland, 1973)3

least laxity first (Dhall, 1977; Sorenson, 1974)4

1Liu, C. L., & Layland, J. W. (1973). Scheduling algorithms for multiprogramming in a hard-real-time
environment. Journal of the ACM (JACM), 20(1), 46-61.

2Leung, J. Y. T., & Merrill, A. M. (1980). A note on preemptive scheduling of periodic, real-time tasks.
Information processing letters, 11(3), 115-118

3Liu, C. L., & Layland, J. W. (1973). Scheduling algorithms for multiprogramming in a hard-real-time
environment. Journal of the ACM (JACM), 20(1), 46-61.

4Dhall, S. K. (1977). Scheduling periodic-time-critical jobs on single processor and multiprocessor
computing systems. University of Illinois at Urbana-Champaign.

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 6 / 17

On-line algorithms for periodic tasks
simple rule—that assigns priorities according to temporal parameters of tasks.

static—the priority is fixed. the priorities are assigned to tasks before execution
and do not change over time. For example:

rate monotonic (Liu and Layland, 1973)1

inverse deadline or deadline monotonic (Leung and Merrill, 1980)2

dynamic—scheduling algorithm is based on variable parameters, i.e. absolute
task deadlines

earliest deadline first (Liu and Layland, 1973)3

least laxity first (Dhall, 1977; Sorenson, 1974)4

1Liu, C. L., & Layland, J. W. (1973). Scheduling algorithms for multiprogramming in a hard-real-time
environment. Journal of the ACM (JACM), 20(1), 46-61.

2Leung, J. Y. T., & Merrill, A. M. (1980). A note on preemptive scheduling of periodic, real-time tasks.
Information processing letters, 11(3), 115-118

3Liu, C. L., & Layland, J. W. (1973). Scheduling algorithms for multiprogramming in a hard-real-time
environment. Journal of the ACM (JACM), 20(1), 46-61.

4Dhall, S. K. (1977). Scheduling periodic-time-critical jobs on single processor and multiprocessor
computing systems. University of Illinois at Urbana-Champaign.

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 6 / 17

On-line algorithms for periodic tasks
simple rule—that assigns priorities according to temporal parameters of tasks.

static—the priority is fixed. the priorities are assigned to tasks before execution
and do not change over time. For example:

rate monotonic (Liu and Layland, 1973)1

inverse deadline or deadline monotonic (Leung and Merrill, 1980)2

dynamic—scheduling algorithm is based on variable parameters, i.e. absolute
task deadlines

earliest deadline first (Liu and Layland, 1973)3

least laxity first (Dhall, 1977; Sorenson, 1974)4

1Liu, C. L., & Layland, J. W. (1973). Scheduling algorithms for multiprogramming in a hard-real-time
environment. Journal of the ACM (JACM), 20(1), 46-61.

2Leung, J. Y. T., & Merrill, A. M. (1980). A note on preemptive scheduling of periodic, real-time tasks.
Information processing letters, 11(3), 115-118

3Liu, C. L., & Layland, J. W. (1973). Scheduling algorithms for multiprogramming in a hard-real-time
environment. Journal of the ACM (JACM), 20(1), 46-61.

4Dhall, S. K. (1977). Scheduling periodic-time-critical jobs on single processor and multiprocessor
computing systems. University of Illinois at Urbana-Champaign.

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 6 / 17

On-line algorithms for periodic tasks
simple rule—that assigns priorities according to temporal parameters of tasks.

static—the priority is fixed. the priorities are assigned to tasks before execution
and do not change over time. For example:

rate monotonic (Liu and Layland, 1973)1

inverse deadline or deadline monotonic (Leung and Merrill, 1980)2

dynamic—scheduling algorithm is based on variable parameters, i.e. absolute
task deadlines

earliest deadline first (Liu and Layland, 1973)3

least laxity first (Dhall, 1977; Sorenson, 1974)4

1Liu, C. L., & Layland, J. W. (1973). Scheduling algorithms for multiprogramming in a hard-real-time
environment. Journal of the ACM (JACM), 20(1), 46-61.

2Leung, J. Y. T., & Merrill, A. M. (1980). A note on preemptive scheduling of periodic, real-time tasks.
Information processing letters, 11(3), 115-118

3Liu, C. L., & Layland, J. W. (1973). Scheduling algorithms for multiprogramming in a hard-real-time
environment. Journal of the ACM (JACM), 20(1), 46-61.

4Dhall, S. K. (1977). Scheduling periodic-time-critical jobs on single processor and multiprocessor
computing systems. University of Illinois at Urbana-Champaign.

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 6 / 17

On-line algorithms for periodic tasks
simple rule—that assigns priorities according to temporal parameters of tasks.

static—the priority is fixed. the priorities are assigned to tasks before execution
and do not change over time. For example:

rate monotonic (Liu and Layland, 1973)1

inverse deadline or deadline monotonic (Leung and Merrill, 1980)2

dynamic—scheduling algorithm is based on variable parameters, i.e. absolute
task deadlines

earliest deadline first (Liu and Layland, 1973)3

least laxity first (Dhall, 1977; Sorenson, 1974)4

1Liu, C. L., & Layland, J. W. (1973). Scheduling algorithms for multiprogramming in a hard-real-time
environment. Journal of the ACM (JACM), 20(1), 46-61.

2Leung, J. Y. T., & Merrill, A. M. (1980). A note on preemptive scheduling of periodic, real-time tasks.
Information processing letters, 11(3), 115-118

3Liu, C. L., & Layland, J. W. (1973). Scheduling algorithms for multiprogramming in a hard-real-time
environment. Journal of the ACM (JACM), 20(1), 46-61.

4Dhall, S. K. (1977). Scheduling periodic-time-critical jobs on single processor and multiprocessor
computing systems. University of Illinois at Urbana-Champaign.

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 6 / 17

Rate monotonic scheduling
summary—with the rate monotonic (RM) algorithm, tasks with shorter periods
(higher request rates) get higher priorities. Task with smallest time period have
highest priority and a task with longest time period have the lowest priority

Priorities are fixed and are decided before start of execution and does not
change over time

Priority of a task is inversely proportional to its timer period.
For a set of n periodic tasks, a feasible RM schedule exists if the CPU
utilization, U, is below a specific bound (Equation (3))

U =
n

∑
i=1

Ui =
n

∑
i=1

Ci

Ti
≤ ·n

(
2

1
n − 1

)
(3)

where:

U—utilization factor
Ci —computation time for task τi
Ti —release period for task τi
n —number of tasks to be scheduled.

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 7 / 17

Rate monotonic scheduling
summary—with the rate monotonic (RM) algorithm, tasks with shorter periods
(higher request rates) get higher priorities. Task with smallest time period have
highest priority and a task with longest time period have the lowest priority

Priorities are fixed and are decided before start of execution and does not
change over time
Priority of a task is inversely proportional to its timer period.

For a set of n periodic tasks, a feasible RM schedule exists if the CPU
utilization, U, is below a specific bound (Equation (3))

U =
n

∑
i=1

Ui =
n

∑
i=1

Ci

Ti
≤ ·n

(
2

1
n − 1

)
(3)

where:

U—utilization factor
Ci —computation time for task τi
Ti —release period for task τi
n —number of tasks to be scheduled.

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 7 / 17

Rate monotonic scheduling
summary—with the rate monotonic (RM) algorithm, tasks with shorter periods
(higher request rates) get higher priorities. Task with smallest time period have
highest priority and a task with longest time period have the lowest priority

Priorities are fixed and are decided before start of execution and does not
change over time
Priority of a task is inversely proportional to its timer period.
For a set of n periodic tasks, a feasible RM schedule exists if the CPU
utilization, U, is below a specific bound (Equation (3))

U =
n

∑
i=1

Ui =
n

∑
i=1

Ci

Ti
≤ ·n

(
2

1
n − 1

)
(3)

where:

U—utilization factor
Ci —computation time for task τi
Ti —release period for task τi
n —number of tasks to be scheduled.

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 7 / 17

Rate monotonic scheduling
summary—with the rate monotonic (RM) algorithm, tasks with shorter periods
(higher request rates) get higher priorities. Task with smallest time period have
highest priority and a task with longest time period have the lowest priority

Priorities are fixed and are decided before start of execution and does not
change over time
Priority of a task is inversely proportional to its timer period.
For a set of n periodic tasks, a feasible RM schedule exists if the CPU
utilization, U, is below a specific bound (Equation (3))

U =
n

∑
i=1

Ui =
n

∑
i=1

Ci

Ti
≤ ·n

(
2

1
n − 1

)
(3)

where:
U—utilization factor

Ci —computation time for task τi
Ti —release period for task τi
n —number of tasks to be scheduled.

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 7 / 17

Rate monotonic scheduling
summary—with the rate monotonic (RM) algorithm, tasks with shorter periods
(higher request rates) get higher priorities. Task with smallest time period have
highest priority and a task with longest time period have the lowest priority

Priorities are fixed and are decided before start of execution and does not
change over time
Priority of a task is inversely proportional to its timer period.
For a set of n periodic tasks, a feasible RM schedule exists if the CPU
utilization, U, is below a specific bound (Equation (3))

U =
n

∑
i=1

Ui =
n

∑
i=1

Ci

Ti
≤ ·n

(
2

1
n − 1

)
(3)

where:
U—utilization factor
Ci —computation time for task τi

Ti —release period for task τi
n —number of tasks to be scheduled.

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 7 / 17

Rate monotonic scheduling
summary—with the rate monotonic (RM) algorithm, tasks with shorter periods
(higher request rates) get higher priorities. Task with smallest time period have
highest priority and a task with longest time period have the lowest priority

Priorities are fixed and are decided before start of execution and does not
change over time
Priority of a task is inversely proportional to its timer period.
For a set of n periodic tasks, a feasible RM schedule exists if the CPU
utilization, U, is below a specific bound (Equation (3))

U =
n

∑
i=1

Ui =
n

∑
i=1

Ci

Ti
≤ ·n

(
2

1
n − 1

)
(3)

where:
U—utilization factor
Ci —computation time for task τi
Ti —release period for task τi

n —number of tasks to be scheduled.

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 7 / 17

Rate monotonic scheduling
summary—with the rate monotonic (RM) algorithm, tasks with shorter periods
(higher request rates) get higher priorities. Task with smallest time period have
highest priority and a task with longest time period have the lowest priority

Priorities are fixed and are decided before start of execution and does not
change over time
Priority of a task is inversely proportional to its timer period.
For a set of n periodic tasks, a feasible RM schedule exists if the CPU
utilization, U, is below a specific bound (Equation (3))

U =
n

∑
i=1

Ui =
n

∑
i=1

Ci

Ti
≤ ·n

(
2

1
n − 1

)
(3)

where:
U—utilization factor
Ci —computation time for task τi
Ti —release period for task τi
n —number of tasks to be scheduled.

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 7 / 17

Rate monotonic scheduling
For two tasks (i.e., n = 2), the upper bounds on utilization is (Equation (4))

n
(

2
1
2 − 1

)
= 2

(√
2 − 1

)
= 0.828 (4)

For a large number of tasks (i.e., n → ∞), the upper bound is

U ≤ lim
n→∞

n
(

2
1
n − 1

)
= ln(2) = 0.693 (5)

As a general rule, when n > 10, the RMS can meet its deadlines if U < 70%

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 8 / 17

Rate monotonic scheduling
For two tasks (i.e., n = 2), the upper bounds on utilization is (Equation (4))

n
(

2
1
2 − 1

)
= 2

(√
2 − 1

)
= 0.828 (4)

For a large number of tasks (i.e., n → ∞), the upper bound is

U ≤ lim
n→∞

n
(

2
1
n − 1

)
= ln(2) = 0.693 (5)

As a general rule, when n > 10, the RMS can meet its deadlines if U < 70%

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 8 / 17

Rate monotonic scheduling
For two tasks (i.e., n = 2), the upper bounds on utilization is (Equation (4))

n
(

2
1
2 − 1

)
= 2

(√
2 − 1

)
= 0.828 (4)

For a large number of tasks (i.e., n → ∞), the upper bound is

U ≤ lim
n→∞

n
(

2
1
n − 1

)
= ln(2) = 0.693 (5)

As a general rule, when n > 10, the RMS can meet its deadlines if U < 70%

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 8 / 17

Rate monotonic scheduling—Example 1

According to RM scheduling
algorithm task with shorter period
has higher priority so τ2 has the
highest priority, τ3 an intermediate
priority and τ1 the lowest priority

At t = 0, all the tasks are released.
Now τ2 (highest priority
task)executes first till t = 2.
At t = 2 τ3 (intermediate priority)
executes second until t = 4

FIG 2. Example of a rate monotonic schedule
with three periodic tasks: τ1(0,3,20,20),
τ2(0,2,5,5) and τ3(0,2,10,10)

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 9 / 17

Rate monotonic scheduling—Example 1

According to RM scheduling
algorithm task with shorter period
has higher priority so τ2 has the
highest priority, τ3 an intermediate
priority and τ1 the lowest priority
At t = 0, all the tasks are released.
Now τ2 (highest priority
task)executes first till t = 2.

At t = 2 τ3 (intermediate priority)
executes second until t = 4

FIG 2. Example of a rate monotonic schedule
with three periodic tasks: τ1(0,3,20,20),
τ2(0,2,5,5) and τ3(0,2,10,10)

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 9 / 17

Rate monotonic scheduling—Example 1

According to RM scheduling
algorithm task with shorter period
has higher priority so τ2 has the
highest priority, τ3 an intermediate
priority and τ1 the lowest priority
At t = 0, all the tasks are released.
Now τ2 (highest priority
task)executes first till t = 2.
At t = 2 τ3 (intermediate priority)
executes second until t = 4

FIG 2. Example of a rate monotonic schedule
with three periodic tasks: τ1(0,3,20,20),
τ2(0,2,5,5) and τ3(0,2,10,10)

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 9 / 17

Rate monotonic scheduling

After τ2 completes, the lowest priority
task, τ1, executes until t = 5

At t = 5, τ2 is released, and since it
has higher priority that τ1, it
preempts τ1 and starts its execution
until completion at t = 7
etc...

FIG 3. Example of a rate monotonic schedule
with three periodic tasks: τ1(0,3,20,20),
τ2(0,2,5,5) and τ3(0,2,10,10)

The three tasks meet their deadline since the utilization factors

U =
3

20
+

2
5
+

2
10

= 0.75 ≤ 3(2
1
3 − 1) = 0.779 (6)

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 10 / 17

Rate monotonic scheduling

After τ2 completes, the lowest priority
task, τ1, executes until t = 5
At t = 5, τ2 is released, and since it
has higher priority that τ1, it
preempts τ1 and starts its execution
until completion at t = 7

etc...

FIG 3. Example of a rate monotonic schedule
with three periodic tasks: τ1(0,3,20,20),
τ2(0,2,5,5) and τ3(0,2,10,10)

The three tasks meet their deadline since the utilization factors

U =
3

20
+

2
5
+

2
10

= 0.75 ≤ 3(2
1
3 − 1) = 0.779 (6)

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 10 / 17

Rate monotonic scheduling

After τ2 completes, the lowest priority
task, τ1, executes until t = 5
At t = 5, τ2 is released, and since it
has higher priority that τ1, it
preempts τ1 and starts its execution
until completion at t = 7
etc... FIG 3. Example of a rate monotonic schedule

with three periodic tasks: τ1(0,3,20,20),
τ2(0,2,5,5) and τ3(0,2,10,10)

The three tasks meet their deadline since the utilization factors

U =
3

20
+

2
5
+

2
10

= 0.75 ≤ 3(2
1
3 − 1) = 0.779 (6)

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 10 / 17

Rate monotonic scheduling

After τ2 completes, the lowest priority
task, τ1, executes until t = 5
At t = 5, τ2 is released, and since it
has higher priority that τ1, it
preempts τ1 and starts its execution
until completion at t = 7
etc... FIG 3. Example of a rate monotonic schedule

with three periodic tasks: τ1(0,3,20,20),
τ2(0,2,5,5) and τ3(0,2,10,10)

The three tasks meet their deadline since the utilization factors

U =
3

20
+

2
5
+

2
10

= 0.75 ≤ 3(2
1
3 − 1) = 0.779 (6)

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 10 / 17

Rate monotonic scheduling

After τ2 completes, the lowest priority
task, τ1, executes until t = 5
At t = 5, τ2 is released, and since it
has higher priority that τ1, it
preempts τ1 and starts its execution
until completion at t = 7
etc... FIG 3. Example of a rate monotonic schedule

with three periodic tasks: τ1(0,3,20,20),
τ2(0,2,5,5) and τ3(0,2,10,10)

The three tasks meet their deadline since the utilization factors

U =
3

20
+

2
5
+

2
10

= 0.75 ≤ 3(2
1
3 − 1) = 0.779 (6)

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 10 / 17

Rate monotonic scheduling —Example 2

In this example, we have a set of
three periodic tasks for which the
relative deadline is equal to the
period

Task τ1 has the highest priority and
task τ3 has the lowest priority.
The major cycle of the task set is
LCM(100, 150, 350) = 2100.

FIG 4. Example of a rate monotonic schedule
with three periodic tasks: τ1 (0, 20, 100, 100),
τ2(0, 40, 150, 150) and τ3(0, 100, 350, 350)

The processor utilization factor is:

U =
20
100

+
40

150
+

100
350

= 0.75 < 3 · (3
√

2 − 1) = 0.779 (7)

So this task set is schedulable. All the three tasks meet their deadlines.

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 11 / 17

Rate monotonic scheduling —Example 2

In this example, we have a set of
three periodic tasks for which the
relative deadline is equal to the
period
Task τ1 has the highest priority and
task τ3 has the lowest priority.

The major cycle of the task set is
LCM(100, 150, 350) = 2100.

FIG 4. Example of a rate monotonic schedule
with three periodic tasks: τ1 (0, 20, 100, 100),
τ2(0, 40, 150, 150) and τ3(0, 100, 350, 350)

The processor utilization factor is:

U =
20
100

+
40

150
+

100
350

= 0.75 < 3 · (3
√

2 − 1) = 0.779 (7)

So this task set is schedulable. All the three tasks meet their deadlines.

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 11 / 17

Rate monotonic scheduling —Example 2

In this example, we have a set of
three periodic tasks for which the
relative deadline is equal to the
period
Task τ1 has the highest priority and
task τ3 has the lowest priority.
The major cycle of the task set is
LCM(100, 150, 350) = 2100.

FIG 4. Example of a rate monotonic schedule
with three periodic tasks: τ1 (0, 20, 100, 100),
τ2(0, 40, 150, 150) and τ3(0, 100, 350, 350)

The processor utilization factor is:

U =
20
100

+
40

150
+

100
350

= 0.75 < 3 · (3
√

2 − 1) = 0.779 (7)

So this task set is schedulable. All the three tasks meet their deadlines.

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 11 / 17

Rate monotonic scheduling —Example 2

In this example, we have a set of
three periodic tasks for which the
relative deadline is equal to the
period
Task τ1 has the highest priority and
task τ3 has the lowest priority.
The major cycle of the task set is
LCM(100, 150, 350) = 2100.

FIG 4. Example of a rate monotonic schedule
with three periodic tasks: τ1 (0, 20, 100, 100),
τ2(0, 40, 150, 150) and τ3(0, 100, 350, 350)

The processor utilization factor is:

U =
20
100

+
40

150
+

100
350

= 0.75 < 3 · (3
√

2 − 1) = 0.779 (7)

So this task set is schedulable. All the three tasks meet their deadlines.

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 11 / 17

Rate monotonic scheduling —Example 2

In this example, we have a set of
three periodic tasks for which the
relative deadline is equal to the
period
Task τ1 has the highest priority and
task τ3 has the lowest priority.
The major cycle of the task set is
LCM(100, 150, 350) = 2100.

FIG 4. Example of a rate monotonic schedule
with three periodic tasks: τ1 (0, 20, 100, 100),
τ2(0, 40, 150, 150) and τ3(0, 100, 350, 350)

The processor utilization factor is:

U =
20
100

+
40

150
+

100
350

= 0.75 < 3 · (3
√

2 − 1) = 0.779 (7)

So this task set is schedulable. All the three tasks meet their deadlines.

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 11 / 17

Rate monotonic scheduling
Due to priority assignment based on the periods of tasks, the RM algorithm
should be used to schedule tasks with relative deadlines equal to periods.

This is the case where the sufficient condition (Equation (3)) can be used.
For tasks with relative deadlines not equal to periods, the inverse deadline
algorithm should be used.
The RMS can meet all of the deadlines if total CPU utilization, U ≤ 70%. The
other 30% of the CPU can be dedicated to lower-priority, non-real-time tasks.
For smaller values of n or in cases where U is close to this estimate, the
calculated utilization bound should be used.

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 12 / 17

Rate monotonic scheduling
Due to priority assignment based on the periods of tasks, the RM algorithm
should be used to schedule tasks with relative deadlines equal to periods.
This is the case where the sufficient condition (Equation (3)) can be used.

For tasks with relative deadlines not equal to periods, the inverse deadline
algorithm should be used.
The RMS can meet all of the deadlines if total CPU utilization, U ≤ 70%. The
other 30% of the CPU can be dedicated to lower-priority, non-real-time tasks.
For smaller values of n or in cases where U is close to this estimate, the
calculated utilization bound should be used.

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 12 / 17

Rate monotonic scheduling
Due to priority assignment based on the periods of tasks, the RM algorithm
should be used to schedule tasks with relative deadlines equal to periods.
This is the case where the sufficient condition (Equation (3)) can be used.
For tasks with relative deadlines not equal to periods, the inverse deadline
algorithm should be used.

The RMS can meet all of the deadlines if total CPU utilization, U ≤ 70%. The
other 30% of the CPU can be dedicated to lower-priority, non-real-time tasks.
For smaller values of n or in cases where U is close to this estimate, the
calculated utilization bound should be used.

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 12 / 17

Rate monotonic scheduling
Due to priority assignment based on the periods of tasks, the RM algorithm
should be used to schedule tasks with relative deadlines equal to periods.
This is the case where the sufficient condition (Equation (3)) can be used.
For tasks with relative deadlines not equal to periods, the inverse deadline
algorithm should be used.
The RMS can meet all of the deadlines if total CPU utilization, U ≤ 70%. The
other 30% of the CPU can be dedicated to lower-priority, non-real-time tasks.

For smaller values of n or in cases where U is close to this estimate, the
calculated utilization bound should be used.

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 12 / 17

Rate monotonic scheduling
Due to priority assignment based on the periods of tasks, the RM algorithm
should be used to schedule tasks with relative deadlines equal to periods.
This is the case where the sufficient condition (Equation (3)) can be used.
For tasks with relative deadlines not equal to periods, the inverse deadline
algorithm should be used.
The RMS can meet all of the deadlines if total CPU utilization, U ≤ 70%. The
other 30% of the CPU can be dedicated to lower-priority, non-real-time tasks.
For smaller values of n or in cases where U is close to this estimate, the
calculated utilization bound should be used.

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 12 / 17

Inverse (monotonic) deadline
algorithm

Deadline-monotonic scheduling
summary—Deadline-monotonic priority assignment is a priority assignment policy
used with fixed-priority pre-emptive scheduling5

Allows a weakening of the condition which requires equality between periods
and deadlines in static-priority schemes.

The task with the shortest relative deadline is assigned the highest priority6

For an arbitrary set of n tasks with deadlines shorter than periods, a sufficient
condition is given in Equation (8)

U =
n

∑
i=1

Ci

Di
≤ n ·

(
2

1
n − 1

)
(8)

5https://en.wikipedia.org/wiki/Fixed-priority_pre-emptive_scheduling
6Audsley, N. C., Burns, A., & Wellings, A. J. (1993). Deadline monotonic scheduling theory and

application. Control Engineering Practice, 1(1), 71–78.
https://doi.org/10.1016/0967-0661(93)92105-D

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 13 / 17

https://en.wikipedia.org/wiki/Fixed-priority_pre-emptive_scheduling

Deadline-monotonic scheduling
summary—Deadline-monotonic priority assignment is a priority assignment policy
used with fixed-priority pre-emptive scheduling5

Allows a weakening of the condition which requires equality between periods
and deadlines in static-priority schemes.
The task with the shortest relative deadline is assigned the highest priority6

For an arbitrary set of n tasks with deadlines shorter than periods, a sufficient
condition is given in Equation (8)

U =
n

∑
i=1

Ci

Di
≤ n ·

(
2

1
n − 1

)
(8)

5https://en.wikipedia.org/wiki/Fixed-priority_pre-emptive_scheduling
6Audsley, N. C., Burns, A., & Wellings, A. J. (1993). Deadline monotonic scheduling theory and

application. Control Engineering Practice, 1(1), 71–78.
https://doi.org/10.1016/0967-0661(93)92105-D

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 13 / 17

https://en.wikipedia.org/wiki/Fixed-priority_pre-emptive_scheduling

Deadline-monotonic scheduling
summary—Deadline-monotonic priority assignment is a priority assignment policy
used with fixed-priority pre-emptive scheduling5

Allows a weakening of the condition which requires equality between periods
and deadlines in static-priority schemes.
The task with the shortest relative deadline is assigned the highest priority6

For an arbitrary set of n tasks with deadlines shorter than periods, a sufficient
condition is given in Equation (8)

U =
n

∑
i=1

Ci

Di
≤ n ·

(
2

1
n − 1

)
(8)

5https://en.wikipedia.org/wiki/Fixed-priority_pre-emptive_scheduling
6Audsley, N. C., Burns, A., & Wellings, A. J. (1993). Deadline monotonic scheduling theory and

application. Control Engineering Practice, 1(1), 71–78.
https://doi.org/10.1016/0967-0661(93)92105-D

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 13 / 17

https://en.wikipedia.org/wiki/Fixed-priority_pre-emptive_scheduling

Deadline-monotonic scheduling—Example

Task τ2 has the highest priority and
task τ3 the lowest.

The sufficient condition in Equation
(8) is not satisfied because the
processor load factor is
1.15 > 0.779 (Equation (9))
However, the task set is schedulable
because the schedule is given within
the major cycle of the task set.

FIG 5. Inverse deadline schedule for a set of three
periodic tasks τ1 (r0 = 0,C = 3,D = 7,T = 20),
τ2(r0 = 0,C = 2,D = 4,T = 5) and
τ3(r0 = 0,C = 2,D = 9,T = 10)

U =
3
7
+

2
4
+

2
9
= 1.15 > 3(3

√
2 − 1) = 0.779 (9)

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 14 / 17

Deadline-monotonic scheduling—Example

Task τ2 has the highest priority and
task τ3 the lowest.
The sufficient condition in Equation
(8) is not satisfied because the
processor load factor is
1.15 > 0.779 (Equation (9))

However, the task set is schedulable
because the schedule is given within
the major cycle of the task set.

FIG 5. Inverse deadline schedule for a set of three
periodic tasks τ1 (r0 = 0,C = 3,D = 7,T = 20),
τ2(r0 = 0,C = 2,D = 4,T = 5) and
τ3(r0 = 0,C = 2,D = 9,T = 10)

U =
3
7
+

2
4
+

2
9
= 1.15 > 3(3

√
2 − 1) = 0.779 (9)

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 14 / 17

Deadline-monotonic scheduling—Example

Task τ2 has the highest priority and
task τ3 the lowest.
The sufficient condition in Equation
(8) is not satisfied because the
processor load factor is
1.15 > 0.779 (Equation (9))
However, the task set is schedulable
because the schedule is given within
the major cycle of the task set. FIG 5. Inverse deadline schedule for a set of three

periodic tasks τ1 (r0 = 0,C = 3,D = 7,T = 20),
τ2(r0 = 0,C = 2,D = 4,T = 5) and
τ3(r0 = 0,C = 2,D = 9,T = 10)

U =
3
7
+

2
4
+

2
9
= 1.15 > 3(3

√
2 − 1) = 0.779 (9)

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 14 / 17

Earliest deadline first algorithm

Earliest deadline first algorithm
summary—the earliest deadline first (EDF) algorithm assigns priority to tasks
according to their absolute deadline: the task with the earliest deadline will be
executed as the highest priority.

The EDF algorithm does not make any assumption about the periodicity of the
tasks; hence it can be used for scheduling periodic as well as aperiodic tasks.

A necessary and sufficient schedulability condition exists for periodic tasks with
deadlines equal to periods.
A set of periodic tasks with deadlines equal to periods is schedulable with the
EDF algorithm if and only if the processor utilization factor is less than or equal
to 1 (Equation (10))

U =
n

∑
i=1

Ci

Ti
≤ 1 (10)

A hybrid task set is schedulable with the EDF algorithm if (Equation (11)):

U =
n

∑
i=1

Ci

Di
≤ 1 (11)

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 15 / 17

Earliest deadline first algorithm
summary—the earliest deadline first (EDF) algorithm assigns priority to tasks
according to their absolute deadline: the task with the earliest deadline will be
executed as the highest priority.

The EDF algorithm does not make any assumption about the periodicity of the
tasks; hence it can be used for scheduling periodic as well as aperiodic tasks.
A necessary and sufficient schedulability condition exists for periodic tasks with
deadlines equal to periods.

A set of periodic tasks with deadlines equal to periods is schedulable with the
EDF algorithm if and only if the processor utilization factor is less than or equal
to 1 (Equation (10))

U =
n

∑
i=1

Ci

Ti
≤ 1 (10)

A hybrid task set is schedulable with the EDF algorithm if (Equation (11)):

U =
n

∑
i=1

Ci

Di
≤ 1 (11)

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 15 / 17

Earliest deadline first algorithm
summary—the earliest deadline first (EDF) algorithm assigns priority to tasks
according to their absolute deadline: the task with the earliest deadline will be
executed as the highest priority.

The EDF algorithm does not make any assumption about the periodicity of the
tasks; hence it can be used for scheduling periodic as well as aperiodic tasks.
A necessary and sufficient schedulability condition exists for periodic tasks with
deadlines equal to periods.
A set of periodic tasks with deadlines equal to periods is schedulable with the
EDF algorithm if and only if the processor utilization factor is less than or equal
to 1 (Equation (10))

U =
n

∑
i=1

Ci

Ti
≤ 1 (10)

A hybrid task set is schedulable with the EDF algorithm if (Equation (11)):

U =
n

∑
i=1

Ci

Di
≤ 1 (11)

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 15 / 17

Earliest deadline first algorithm
summary—the earliest deadline first (EDF) algorithm assigns priority to tasks
according to their absolute deadline: the task with the earliest deadline will be
executed as the highest priority.

The EDF algorithm does not make any assumption about the periodicity of the
tasks; hence it can be used for scheduling periodic as well as aperiodic tasks.
A necessary and sufficient schedulability condition exists for periodic tasks with
deadlines equal to periods.
A set of periodic tasks with deadlines equal to periods is schedulable with the
EDF algorithm if and only if the processor utilization factor is less than or equal
to 1 (Equation (10))

U =
n

∑
i=1

Ci

Ti
≤ 1 (10)

A hybrid task set is schedulable with the EDF algorithm if (Equation (11)):

U =
n

∑
i=1

Ci

Di
≤ 1 (11)

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 15 / 17

Earliest deadline first algorithm—Example

At time t = 0, the three tasks are
ready to execute and the task with
the smallest absolute deadline is τ2.

τ2 is executed.
At time t = 2,task τ2 completes.
The task with the smallest absolute
deadline is now τ1, which executes
until completion at t = 5
At this point, task τ2 is again ready.
However, the task with the smallest
absolute deadline is now τ3, which
begins to execute.

FIG 6. EDF EDF schedule for a set of three
periodic tasks τ1(r0 = 0,C = 3,D = 7,20 =
T),τ2(r0 = 0,C = 2,D = 4,T = 5),
τ3(r0 = 0,C = 1,D = 8,T = 10)

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 16 / 17

Earliest deadline first algorithm—Example

At time t = 0, the three tasks are
ready to execute and the task with
the smallest absolute deadline is τ2.
τ2 is executed.

At time t = 2,task τ2 completes.
The task with the smallest absolute
deadline is now τ1, which executes
until completion at t = 5
At this point, task τ2 is again ready.
However, the task with the smallest
absolute deadline is now τ3, which
begins to execute.

FIG 6. EDF EDF schedule for a set of three
periodic tasks τ1(r0 = 0,C = 3,D = 7,20 =
T),τ2(r0 = 0,C = 2,D = 4,T = 5),
τ3(r0 = 0,C = 1,D = 8,T = 10)

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 16 / 17

Earliest deadline first algorithm—Example

At time t = 0, the three tasks are
ready to execute and the task with
the smallest absolute deadline is τ2.
τ2 is executed.
At time t = 2,task τ2 completes.

The task with the smallest absolute
deadline is now τ1, which executes
until completion at t = 5
At this point, task τ2 is again ready.
However, the task with the smallest
absolute deadline is now τ3, which
begins to execute.

FIG 6. EDF EDF schedule for a set of three
periodic tasks τ1(r0 = 0,C = 3,D = 7,20 =
T),τ2(r0 = 0,C = 2,D = 4,T = 5),
τ3(r0 = 0,C = 1,D = 8,T = 10)

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 16 / 17

Earliest deadline first algorithm—Example

At time t = 0, the three tasks are
ready to execute and the task with
the smallest absolute deadline is τ2.
τ2 is executed.
At time t = 2,task τ2 completes.
The task with the smallest absolute
deadline is now τ1, which executes
until completion at t = 5

At this point, task τ2 is again ready.
However, the task with the smallest
absolute deadline is now τ3, which
begins to execute.

FIG 6. EDF EDF schedule for a set of three
periodic tasks τ1(r0 = 0,C = 3,D = 7,20 =
T),τ2(r0 = 0,C = 2,D = 4,T = 5),
τ3(r0 = 0,C = 1,D = 8,T = 10)

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 16 / 17

Earliest deadline first algorithm—Example

At time t = 0, the three tasks are
ready to execute and the task with
the smallest absolute deadline is τ2.
τ2 is executed.
At time t = 2,task τ2 completes.
The task with the smallest absolute
deadline is now τ1, which executes
until completion at t = 5
At this point, task τ2 is again ready.
However, the task with the smallest
absolute deadline is now τ3, which
begins to execute.

FIG 6. EDF EDF schedule for a set of three
periodic tasks τ1(r0 = 0,C = 3,D = 7,20 =
T),τ2(r0 = 0,C = 2,D = 4,T = 5),
τ3(r0 = 0,C = 1,D = 8,T = 10)

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 16 / 17

Least laxity first algorithm

Least laxity first algorithm
summary—the least laxity first (LLF) algorithm assigns priority to tasks according to
their relative laxity: the task with the smallest laxity will be executed at the highest
priority

When a task is executed, its relative laxity is constant.

However, the relative laxity of ready tasks decreases.
Thus, when the laxity of the tasks is computed only at arrival times, the LLF
schedule is equivalent to the EDF schedule.
However if the laxity is computed at every time t , more context-switching will
be necessary.
Please take a closer look at example Figure 2.9 on page 32 of the textbook

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 17 / 17

Least laxity first algorithm
summary—the least laxity first (LLF) algorithm assigns priority to tasks according to
their relative laxity: the task with the smallest laxity will be executed at the highest
priority

When a task is executed, its relative laxity is constant.
However, the relative laxity of ready tasks decreases.

Thus, when the laxity of the tasks is computed only at arrival times, the LLF
schedule is equivalent to the EDF schedule.
However if the laxity is computed at every time t , more context-switching will
be necessary.
Please take a closer look at example Figure 2.9 on page 32 of the textbook

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 17 / 17

Least laxity first algorithm
summary—the least laxity first (LLF) algorithm assigns priority to tasks according to
their relative laxity: the task with the smallest laxity will be executed at the highest
priority

When a task is executed, its relative laxity is constant.
However, the relative laxity of ready tasks decreases.
Thus, when the laxity of the tasks is computed only at arrival times, the LLF
schedule is equivalent to the EDF schedule.

However if the laxity is computed at every time t , more context-switching will
be necessary.
Please take a closer look at example Figure 2.9 on page 32 of the textbook

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 17 / 17

Least laxity first algorithm
summary—the least laxity first (LLF) algorithm assigns priority to tasks according to
their relative laxity: the task with the smallest laxity will be executed at the highest
priority

When a task is executed, its relative laxity is constant.
However, the relative laxity of ready tasks decreases.
Thus, when the laxity of the tasks is computed only at arrival times, the LLF
schedule is equivalent to the EDF schedule.
However if the laxity is computed at every time t , more context-switching will
be necessary.

Please take a closer look at example Figure 2.9 on page 32 of the textbook

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 17 / 17

Least laxity first algorithm
summary—the least laxity first (LLF) algorithm assigns priority to tasks according to
their relative laxity: the task with the smallest laxity will be executed at the highest
priority

When a task is executed, its relative laxity is constant.
However, the relative laxity of ready tasks decreases.
Thus, when the laxity of the tasks is computed only at arrival times, the LLF
schedule is equivalent to the EDF schedule.
However if the laxity is computed at every time t , more context-switching will
be necessary.
Please take a closer look at example Figure 2.9 on page 32 of the textbook

Kizito NKURIKIYEYEZU, Ph.D. Scheduling of independent tasks November 16, 2022 17 / 17

The end

	Review
	Scheduling of independent tasks
	Inverse (monotonic) deadline algorithm
	Earliest deadline first algorithm
	Least laxity first algorithm
	The end

